https://github.com/xinshuoweng/AB3DMOT
Installation
git clone https://github.com/xinshuoweng/AB3DMOT.git
- Python 3.6
cd path/to/AB3DMOT
pip3 install -r requirements.txt
git clone https://github.com/xinshuoweng/Xinshuo_PyToolbox
cd Xinshuo_PyToolbox
pip3 install -r requirements.txt
cd ..
export PYTHONPATH=${PYTHONPATH}:/home/user/workspace/code/AB3DMOT
export PYTHONPATH=${PYTHONPATH}:/home/user/workspace/code/AB3DMOT/Xinshuo_PyToolbox
source ~/.profile
cd path/to/AB3DMOT
source env/bin/activate
Run
실행 전, evaluation.py 에서 gt_path 부분 수정 필요.
$python scripts\KITTI\evaluate.py pointrcnn_Car_val_H1 1 3D 0.25
=========evaluation with confidence threshold 7.286145, recall 0.025000=========
sMOTA MOTA MOTP MT ML IDS FRAG F1 Prec Recall FAR TP FP FN
0.9266 0.0232 0.8058 0.0000 0.9444 0 0 0.0501 0.9756 0.0257 0.0030 80 2 3034
================================================================================
=========evaluation with confidence threshold 2.659125, recall 0.050000=========
sMOTA MOTA MOTP MT ML IDS FRAG F1 Prec Recall FAR TP FP FN
0.7593 0.0380 0.7599 0.0333 0.8889 0 0 0.0851 0.9329 0.0446 0.0152 139 10 2980
================================================================================
=================evaluation: best results with single threshold=================
Multiple Object Tracking Accuracy (MOTA) 0.0380
Multiple Object Tracking Precision (MOTP) 0.7599
Multiple Object Tracking Accuracy (MOTAL) 0.0380
Multiple Object Detection Accuracy (MODA) 0.0380
Multiple Object Detection Precision (MODP) 0.9922
Recall 0.0446
Precision 0.9329
F1 0.0851
False Alarm Rate 0.0152
Mostly Tracked 0.0333
Partly Tracked 0.0778
Mostly Lost 0.8889
True Positives 139
Ignored True Positives 11
False Positives 10
False Negatives 2980
Ignored False Negatives 538
ID-switches 0
Fragmentations 0
Ground Truth Objects (Total) 3657
Ignored Ground Truth Objects 549
Ground Truth Trajectories 96
Tracker Objects (Total) 150
Ignored Tracker Objects 1
Tracker Trajectories 28
================================================================================
========================evaluation: average over recall=========================
sAMOTA AMOTA AMOTP
0.0421 0.0015 0.0391
================================================================================
Input and Output
Data type
KITTI dataset(17dim)
frame tracklet_id objectType truncation occlusion alpha x1 y1 x2 y2 h w l X Y Z ry
#Values Name Description
----------------------------------------------------------------------------
1 frame Frame within the sequence where the object appearers
1 track id Unique tracking id of this object within this sequence
1 type Describes the type of object: 'Car', 'Van', 'Truck',
'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
'Misc' or 'DontCare'
1 truncated Integer (0,1,2) indicating the level of truncation.
Note that this is in contrast to the object detection
benchmark where truncation is a float in [0,1].
1 occluded Integer (0,1,2,3) indicating occlusion state:
0 = fully visible, 1 = partly occluded
2 = largely occluded, 3 = unknown
1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
https://github.com/JonathonLuiten/TrackEval/blob/master/docs/KITTI-format.txt
input
/results/KITTI\pointrcnn_Car_val_H1\data_0\0001.txt
/results/KITTI\pointrcnn_Car_val_H1\data_0\0016.txt
output
C:/Users/rosha/OneDrive/Desktop/AVE Lab/AB3DMOT/scripts/KITTI\label\0001.txt
C:/Users/rosha/OneDrive/Desktop/AVE Lab/AB3DMOT/scripts/KITTI\label\0016.txt
'Code > 3D tracking' 카테고리의 다른 글
Simple Track Preprocessing (0) | 2023.10.04 |
---|---|
nuScenes tracking data (0) | 2023.10.03 |
simple track - nuScenes dataset (0) | 2023.09.25 |
Evaluation code (0) | 2023.09.18 |
Simple Track demo (0) | 2023.09.16 |