Dataset/K-Radar

Data for evaluate.py

2023. 10. 12. 18:29
# Initialize NuScenes object.
# We do not store it in self to let garbage collection take care of it and save memory.
nusc = NuScenes(version=nusc_version, verbose=verbose, dataroot=nusc_dataroot)

nusc가 필요한 부분을 정리

 

1. load.gt()

gt_boxes = load_gt(nusc, self.eval_set, TrackingBox, verbose=verbose)

sample.json['token']

# Read out all sample_tokens in DB.
sample_tokens_all = [s['token'] for s in nusc.sample]

sample.json['scene_token']

scene.json['name']

for sample_token in sample_tokens_all:
scene_token = nusc.get('sample', sample_token)['scene_token']
scene_record = nusc.get('scene', scene_token)
if scene_record['name'] in splits[eval_split]:
sample_tokens.append(sample_token)

 

sample.json['sample_token']

sample_annotation.json

for ann_record in self.sample_annotation:
sample_record = self.get('sample', ann_record['sample_token'])
sample_record['anns'].append(ann_record['token'])
sample = nusc.get('sample', sample_token)
sample_annotation_tokens = sample['anns']
for sample_annotation_token in sample_annotation_tokens:

      sample_annotation = nusc.get('sample_annotation', sample_annotation_token)

 

sample_annotation.json['instance_token']

# Use nuScenes token as tracking id.
tracking_id = sample_annotation['instance_token']

 

instance.json['category_token']

sample_annotation.json['instance_token']

category.json['name']

# Decorate (adds short-cut) sample_annotation table with for category name.
for record in self.sample_annotation:
      inst = self.get('instance', record['instance_token'])
      record['category_name'] = self.get('category', inst['category_token'])['name']
tracking_name = category_to_tracking_name(sample_annotation['category_name'])

 

sample_annotation.json['translation']['size']['rotation']

sample_annotation.json['prev']['next']

sample_annotation.json['num_lidar_pts']['num_radar_pts']

sample.json['timestamp']

sample_boxes.append(
box_cls(
sample_token=sample_token,
translation=sample_annotation['translation'],
size=sample_annotation['size'],
rotation=sample_annotation['rotation'],
velocity=nusc.box_velocity(sample_annotation['token'])[:2],
num_pts=sample_annotation['num_lidar_pts'] + sample_annotation['num_radar_pts'],
tracking_id=tracking_id,
tracking_name=tracking_name,
tracking_score=-1.0 # GT samples do not have a score.
)
)

 

2. add_center_dist()

# Add center distances.
pred_boxes = add_center_dist(nusc, pred_boxes)
gt_boxes = add_center_dist(nusc, gt_boxes)

 

sample.json

sample_data.json['ego_pose_token']

for sample_token in eval_boxes.sample_tokens:
sample_rec = nusc.get('sample', sample_token)
sd_record = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])

 

ego_pose.json['translation']

ego_translation = (box.translation[0] - pose_record['translation'][0],
box.translation[1] - pose_record['translation'][1],
box.translation[2] - pose_record['translation'][2])

 

3. filter_eval_boxes()

pred_boxes = filter_eval_boxes(nusc, pred_boxes, self.cfg.class_range, verbose=verbose)
gt_boxes = filter_eval_boxes(nusc, gt_boxes, self.cfg.class_range, verbose=verbose)

 

sample_annotation.json

instance.json

category.json

# Perform bike-rack filtering.
sample_anns = nusc.get('sample', sample_token)['anns']
bikerack_recs = [nusc.get('sample_annotation', ann) for ann in sample_anns if
nusc.get('sample_annotation', ann)['category_name'] == 'static_object.bicycle_rack']

 

4. create_tracks()

# Convert boxes to tracks format.
self.tracks_gt = create_tracks(gt_boxes, nusc, self.eval_set, gt=True)
self.tracks_pred = create_tracks(pred_boxes, nusc, self.eval_set, gt=False)

 

sample.json['scene_token']

scene.json

scene_token = nusc.get('sample', sample_token)['scene_token']
scene = nusc.get('scene', scene_token)

 

 

최종

sample.json

sample_data.json

sample_annotation.json

scene.json

instance.json

category.json

ego_pose.json

 

 

저작자표시 (새창열림)

'Dataset > K-Radar' 카테고리의 다른 글

K-Radar RTNH code run  (1) 2023.11.21
make kradar json file(nuscenes ver.)  (2) 2023.10.17
kradar_token information  (0) 2023.10.16
nuscenes v1.0trainval  (1) 2023.10.11
'Dataset/K-Radar' 카테고리의 다른 글
  • K-Radar RTNH code run
  • make kradar json file(nuscenes ver.)
  • kradar_token information
  • nuscenes v1.0trainval
Shy_un
Shy_un
Shy_un
SSHub
Shy_un
전체
오늘
어제
  • 분류 전체보기
    • KaAI
      • CPWC
      • KSC2022
      • KSME2023
    • Paper
      • Video Anomaly Detection
      • Traffic Accident Detection
      • Prediction and Tracking
      • Perception
    • Code
      • preprocess
      • Autoware
      • 3D tracking
      • Review
      • Debug
    • Dataset
      • Argoverse2 dataset
      • TJ4DRadSet
      • K-Radar
      • Nuscenes
      • Dual-Radar
    • Seminar
    • Paradigm
    • Ubuntu

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • self-supervised learning
  • Traffic accident detection #Unsupervised learning #GRU #Autoencoder
  • video anomaly detection

최근 댓글

최근 글

hELLO · Designed By 정상우.
Shy_un
Data for evaluate.py
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.